Increased susceptibility of Cftr−/− mice to LPS-induced lung remodeling

Author:

Bruscia Emanuela M.1,Zhang Ping-Xia2,Barone Christina1,Scholte Bob J.3,Homer Robert4,Krause Diane S.24,Egan Marie E.15

Affiliation:

1. Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut;

2. Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut;

3. Department of Cell Biology, Erasmus Medical Centre, Rotterdam, The Netherlands

4. Department of Pathology, Yale University School of Medicine, New Haven, Connecticut;

5. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and

Abstract

Cystic fibrosis (CF) is caused by homozygous mutations of the CF transmembrane conductance regulator (CFTR) Cl channel, which result in chronic pulmonary infection and inflammation, the major cause of morbidity and mortality. Although these processes are clearly related to each other, each is likely to contribute to the pathology differently. Understanding the contribution of each of these processes to the overall pathology has been difficult, because they are usually so intimately connected. Various CF mouse models have demonstrated abnormal immune responses compared with wild-type (WT) littermates when challenged with live bacteria or bacterial products acutely. However, these studies have not investigated the consequences of persistent inflammation on lung tissue in CF mice, which may better model the lung pathology in patients. We characterized the lung pathology and immune response of Cftr−/− (CF) and Cftr+/+ (WT) mice to chronic administration of Pseudomonas aeruginosa lipopolysaccharide (LPS). We show that, after long-term repeated LPS exposure, CF mice develop an abnormal and persistent immune response, which is associated with more robust structural changes in the lung than those observed in WT mice. Although CF mice and their WT littermates develop lung pathology after chronic exposure to LPS, the inflammation and damage resolve in WT mice. However, CF mice do not recover efficiently, and, as a consequence of their chronic inflammation, CF mice are more susceptible to morphological changes and lung remodeling. This study shows that chronic inflammation alone contributes significantly to aspects of CF lung pathology.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3