Airway compliance measurements in mouse models of respiratory diseases

Author:

Robichaud Annette1,Fereydoonzad Liah1,Collins Samuel L.2,Loube Jeffrey Martin3,Ishii Yumiko4,Horton Maureen R.2,Martin James G.4,Mitzner Wayne3

Affiliation:

1. SCIREQ Inc., Montreal, Quebec, Canada

2. Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, Maryland

3. Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland

4. Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada

Abstract

The quantification of airway compliance ( Caw) is essential to the study of airway alterations in disease models. However, the required measurements of airway pressure and volume are difficult to acquire in mice. We hypothesized that the inflation limb of full-range pressure-volume (PV) curves could be used to quantify Caw, as it contains a segment where only the airway tree is distended. The study objective was to assess the feasibility of the approach by analysis of full-range PV curves previously collected in three mouse models: an elastase model of emphysema, a genetic model spontaneously developing emphysema (leukotriene C4 synthase knockout; LTC4S-KO), and a bleomycin model of lung fibrosis. Attempts to validate results included Caw change relative to respiratory system compliance (Δ Caw/Δ C), the minute work of breathing (mWOB), and the elastance at 20.5 Hz ( Ers_20.5) from prior respiratory mechanics measurements in the same subjects. Caw was estimated at 3% of total compliance in healthy mice or 2.3 ± 1 μL/cmH2O ( n = 17). The technique detected changes in models of respiratory obstructive and restrictive diseases relative to control mice as well as differences in the two emphysema models studied. The changes in Caw were consistent with those seen in Δ Caw/Δ C, mWOB, or Ers_20.5, with some variations according to the model, as well as with results reported in the literature in humans and mice. Direct Caw measurements in subjects as small as mice could prove useful to further characterize other respiratory disease models associated with airway remodeling or to assess treatment effects.

Funder

Gouvernement du Canada | Canadian Institutes of Health Research

HHS | NIH | National Heart, Lung, and Blood Institute

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3