Experimental progressive emphysema in BALB/cJ mice as a model for chronic alveolar destruction in humans

Author:

Limjunyawong Nathachit1,Craig John M.1,Lagassé H. A. Daniel2,Scott Alan L.2,Mitzner Wayne1

Affiliation:

1. Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and

2. W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland

Abstract

Emphysema, one of the major components of chronic obstructive pulmonary disease (COPD), is characterized by the progressive and irreversible loss of alveolar lung tissue. Even though >80% of COPD cases are associated with cigarette smoking, only a relatively small proportion of smokers develop emphysema, suggesting a potential role for genetic factors in determining individual susceptibility to emphysema. Although strain-dependent effects have been shown in animal models of emphysema, the molecular basis underlying this intrinsic susceptibility is not fully understood. In this present study, we investigated emphysema development using the elastase-induced experimental emphysema model in two commonly used mouse strains, C57BL/6J and BALB/cJ. The results demonstrate that mice with different genetic backgrounds show disparate susceptibility to the development of emphysema. BALB/cJ mice were found to be much more sensitive than C57BL/6J to elastase injury in both a dose-dependent and time-dependent manner, as measured by significantly higher mortality, greater body weight loss, greater decline in lung function, and a greater loss of alveolar tissue. The more susceptible BALB/cJ strain also showed the persistence of inflammatory cells in the lung, especially macrophages and lymphocytes. A comparative gene expression analysis following elastase-induced injury showed BALB/cJ mice had elevated levels of il17A mRNA and a number of classically (M1) and alternatively (M2) activated macrophage genes, whereas the C57BL/6J mice demonstrated augmented levels of interferon-γ. These findings suggest a possible role for these cellular and molecular mediators in modulating the severity of emphysema and highlight the possibility that they might contribute to the heterogeneity observed in clinical emphysema outcomes.

Funder

King Rama VIII's Scholarship Andamahidol Foundation

NIH

NHLBI

MNHLBI

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3