Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung

Author:

van Tuyl Minke,Liu Jason,Wang Jinxia,Kuliszewski Maciek,Tibboel Dick,Post Martin

Abstract

Recent investigations have suggested an active role for endothelial cells in organ development, including the lung. Herein, we investigated some of the molecular mechanisms underlying normal pulmonary vascular development and their influence on epithelial branching morphogenesis. Because the lung in utero develops in a relative hypoxic environment, we first investigated the influence of low oxygen on epithelial and vascular branching morphogenesis. Two transgenic mouse models, the C101-LacZ (epithelial-LacZ marker) and the Tie2-LacZ (endothelial-LacZ marker), were used. At embryonic day 11.5, primitive lung buds were dissected and cultured at either 20 or 3% oxygen. At 24-h intervals, epithelial and endothelial LacZ gene expression was visualized by X-galactosidase staining. The rate of branching of both tissue elements was increased in explants cultured at 3% oxygen compared with 20% oxygen. Low oxygen increased expression of VEGF, but not that of the VEGF receptor (Flk-1). Expression of two crucial epithelial branching factors, fibroblast growth factor-10 and bone morphogenetic protein-4, were not affected by low oxygen. Epithelial differentiation was maintained at low oxygen as shown by surfactant protein C in situ hybridization. To explore epithelial-vascular interactions, we inhibited vascular development with antisense oligonucleotides targeted against either hypoxia inducible factor-1α or VEGF. Epithelial branching morphogenesis in vitro was dramatically abrogated when pulmonary vascular development was inhibited. Collectively, the in vitro data show that a low-oxygen environment enhances branching of both distal lung epithelium and vascular tissue and that pulmonary vascular development appears to be rate limiting for epithelial branching morphogenesis.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3