Extracellular proteasome in the human alveolar space: a new housekeeping enzyme?

Author:

Sixt Stephan Urs,Beiderlinden Martin,Jennissen Herbert Peter,Peters Jürgen

Abstract

We hypothesized that 20S proteasome is present and functional in the extracellular alveolar space in humans. Proteasomal activity was measured in bronchoalveolar lavage (BAL) supernatant from eight humans using specific proteasomal fluorogenic substrates and I125-albumin with and without specific proteasome inhibitors. Furthermore, gelfiltration, Western blot technique, and mass spectrometry were applied for proteasome characterization. All proteasomal fluorogenic substrates were hydrolyzed by BAL supernatant, with hydrolysis inhibited by epoxomicin ( P = 0.024) and other proteasome inhibitors as well. E64, a lysosomal inhibitor, did not inhibit enzyme activity. The majority of proteolytic activity was detected in BAL supernatant rather than in the cell pellet. No correlation was found between proteasomal hydrolysis in BAL supernatant and lactate dehydrogenase activity, the total cell count in the cell pellet, and the fraction of avital cells in the cell pellet, ruling out cell lysis as a major source of proteasomal activity. Gelfiltration revealed hydrolyzing activity in the supernatant at 660 kDa and proteasome core proteins after analysis by ESI-QqTOF mass spectrometry. Furthermore, Western blots using a polyclonal antibody against proteasomal α-/β-subunits detected proteasomal proteins in the typical 20- to 30-kDa range in BAL supernatant. Incubation of BAL supernatant with I125-albumin showed a high mean cleavage rate (101.8 μg/ml × h lavage ± 46 SD) that was inhibited by epoxomicin ( P = 0.013) and was ATP and ubiquitin independent. We identified for the first time extracellular, biologically active, ATP- and ubiquitin-independent 20S proteasome in the human alveolar space, with a high albumin cleavage rate. Possibly, the proteasome assists in maintenance of a low intra-alveolar oncotic pressure and/or alveolar protein degradation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3