Posteruptive Loss of Enamel Proteins Concurs with Gain in Enamel Hardness

Author:

Karaaslan HakanORCID,Walker Alejandro R.ORCID,Gil-Bona AnaORCID,Depalle BaptisteORCID,Bidlack Felicitas B.ORCID

Abstract

ABSTRACTTooth enamel maturation requires the removal of proteins from the mineralizing enamel matrix to allow for crystallite growth until full hardness is reached to meet the mechanical needs of mastication. While this process takes up to several years in humans before the tooth erupts, it is greatly accelerated in in the faster developing pig. As a result, pig teeth erupt with softer, protein-rich enamel that is similar to hypomineralized human enamel but continues to harden quickly after eruption.Proteins, such as albumin, that bind to enamel crystals and prevent crystal growth and enamel hardening have been suggested as cause for hypomineralized human enamel that does not naturally harden after eruption. However, albumin is abundant in pig enamel. It is unclear whether fast posteruptive enamel hardening in pigs occurs despite the high protein content or requires a facilitated protein loss to allow for crystal growth.This study asked how the protein content in porcine enamel changes after eruption in relation to saliva. Based on previous data demonstrating the high albumin content in erupted porcine enamel, we hypothesize that following pre-eruptive maturation, enamel and saliva derived enzymes facilitate protein removal from porcine enamel after eruption. We analyzed enamel and the saliva proteome at three critical timepoints: at the time of tooth eruption, 2 weeks after eruption, and enamel 6 weeks after eruption. We used only fourth deciduous premolars and saliva samples from animals sacrificed at the respective time points to determine the organic content in tooth enamel, saliva, and saliva proteins within enamel.We found a decrease in the number of proteins and their abundancy in enamel with posteruptive time, including a decrease in serum albumin within enamel. The rapid decrease in the first two weeks is in line with previously reported rapid increase in mineral density of porcine enamel after eruption. In addition to the enamel proteases KLK-4 and MMP-20, we identified serine-, cysteine-, aspartic-, and metalloproteases. Some of these were only identified in enamel, while almost half of the enzymes are in common with saliva at all timepoints. Our findings suggest that the fast posteruptive enamel maturation in the porcine model coincides with saliva exchange and influx of saliva enzymes into porous enamel.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Gene Ontology: tool for the unification of biology

2. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

3. Biondi AM , Cortese SG , Babino L , Fridman DE . 2017. Comparison of Mineral Density in Molar Incisor Hypomineralization applying fluoride varnishes and casein phosphopeptide-amorphous calcium phosphate. Acta Odontol Latinoam. 30.

4. Deciduous Tooth Chronology in the Mandible of the Domestic Pig

5. Gelatinase A (MMP-2) in Developing Tooth Tissues and Amelogenin Hydrolysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3