Vascular endothelial growth factor accelerates compensatory lung growth after unilateral pneumonectomy

Author:

Sakurai Maromi K.,Lee Sang,Arsenault Danielle A.,Nose Vania,Wilson Jay M.,Heymach John V.,Puder Mark

Abstract

We hypothesize that compensatory lung growth after unilateral pneumonectomy in a murine model is, in part, angiogenesis dependent and can be altered using angiogenic agents, possibly through regulation of endothelial cell proliferation and apoptosis. Left pneumonectomy was performed in mice. Mice were then treated with proangiogenic factors [vascular endothelial growth factor (VEGF); basic fibroblast growth factor (bFGF)], VEGF receptor antibodies (MF-1, DC101), and VEGF receptor small molecule chemical inhibitors. Lung volume and mass were measured. The lungs were analyzed using immunohistochemistry by CD31 staining, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, type II pneumocytes staining, and proliferating cell nuclear antigen. Compensatory lung growth was complete by postoperative day 10 and was associated with diffuse apoptosis of endothelial cells and pneumocytes. This process was accelerated by VEGF, such that growth was complete by postoperative day 4 with similar associated apoptosis. bFGF had no effect on lung growth. MF-1 and DC101 had no effect. The VEGF receptor small molecule chemical inhibitors also had no effect. VEGF, but not bFGF, accelerates growth. VEGF receptor inhibitors do not block growth, suggesting that other proangiogenic factors play a role or can compensate for VEGF receptor blockade. Diffuse apoptosis, endothelial cell and pneumocyte, occurs at cessation of both normal compensatory and VEGF-accelerated growth. Angiogenesis modulators may control growth via regulation of endothelial cell proliferation and apoptosis, although the exact relationship between endothelial cells and pneumocytes has yet to be determined. The fact that bFGF did not accelerate growth in our model when it did accelerate regeneration in the liver model suggests that angiogenesis during organ regeneration is regulated in an organ-specific manner.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3