Maternal omega-3 PUFA supplementation prevents hyperoxia-induced pulmonary hypertension in the offspring

Author:

Zhong Ying12ORCID,Catheline Daniel3,Houeijeh Ali14,Sharma Dyuti15,Du Lizhong2,Besengez Capucine1,Deruelle Philippe16,Legrand Philippe3,Storme Laurent14

Affiliation:

1. Perinatal Environment and Health, UPRES EA 4489, Université de Lille, Centre Hospitalier Régional Universitaire de Lille, Lille, France

2. Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China

3. Laboratoire de Biochimie et Nutrition Humaine, Institut National de la Recherche Agronomique USC 2012, Institut Supérieur des Sciences Agronomiques, Agroalimentaires, Horticoles et du Paysage, Rennes, France

4. Department of Neonatology, Centre Hospitalier Régional Universitaire de Lille, Lille, France

5. Department of Pediatric Surgery, Centre Hospitalier Régional Universitaire de Lille, Lille, France

6. Department of Obstetrics and Gynecology, Centre Hospitalier Régional Universitaire de Lille, Lille, France

Abstract

Pulmonary hypertension (PH) and right ventricular hypertrophy (RVH) affect 16–25% of premature infants with bronchopulmonary dysplasia (BPD), contributing significantly to perinatal morbidity and mortality. Omega-3 polyunsaturated fatty acids (PUFA ω-3) can improve vascular remodeling, angiogenesis, and inflammation under pathophysiological conditions. However, the effects of PUFA ω-3 supplementation in BPD-associated PH are unknown. The present study aimed to evaluate the effects of PUFA ω-3 on pulmonary vascular remodeling, angiogenesis, and inflammatory response in a hyperoxia-induced rat model of PH. From embryonic day 15, pregnant Sprague-Dawley rats were supplemented daily with PUFA ω-3, PUFA ω-6, or normal saline (0.2 ml/day). After birth, pups were pooled, assigned as 12 per litter, randomly assigned to either air or continuous oxygen exposure (fraction of inspired oxygen = 85%) for 20 days, and then euthanized for pulmonary hemodynamic and morphometric analysis. We found that PUFA ω-3 supplementation improved survival, decreased right ventricular systolic pressure and RVH caused by hyperoxia, and significantly improved alveolarization, vascular remodeling, and vascular density. PUFA ω-3 supplementation produced a higher level of total ω-3 in lung tissue and breast milk and was found to reverse the reduced levels of VEGFA, VEGF receptor 2, angiopoietin-1 (ANGPT1), endothelial TEK tyrosine kinase, endothelial nitric oxide synthase, and nitric oxide concentrations in lung tissue and the increased ANGPT2 levels in hyperoxia-exposed rats. The beneficial effects of PUFA ω-3 in improving lung injuries were also associated with an inhibition of leukocyte infiltration and reduced expression of the proinflammatory cytokines IL-1β, IL-6, and TNF-α. These data indicate that maternal PUFA ω-3 supplementation strategies could effectively protect against infant PH induced by hyperoxia.

Funder

Projet Fédértif Hospitalo-Universitaire (FHU) of France

National Natural Science Foundation of China (NSFC)

Natural Science Foundation of Zhejiang Province (Zhejiang Provincial Natural Science Foundation)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3