Vascular Endothelial Growth Factor as Molecular Target for Bronchopulmonary Dysplasia Prevention in Very Low Birth Weight Infants

Author:

Perrone Serafina1ORCID,Manti Sara2ORCID,Buttarelli Luca1,Petrolini Chiara1ORCID,Boscarino Giovanni3ORCID,Filonzi Laura4,Gitto Eloisa2,Esposito Susanna Maria Roberta3,Nonnis Marzano Francesco4ORCID

Affiliation:

1. Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy

2. Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Unirsity of Messina, Via Consolare Valeria 1, 98125 Messina, Italy

3. Pediatric Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy

4. Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Viale delle Scienze 11, 43125 Parma, Italy

Abstract

Bronchopulmonary dysplasia (BPD) still represents an important burden of neonatal care. The definition of the disease is currently undergoing several revisions, and, to date, BPD is actually defined by its treatment rather than diagnostic or clinic criteria. BPD is associated with many prenatal and postnatal risk factors, such as maternal smoking, chorioamnionitis, intrauterine growth restriction (IUGR), patent ductus arteriosus (PDA), parenteral nutrition, sepsis, and mechanical ventilation. Various experimental models have shown how these factors cause distorted alveolar and vascular growth, as well as alterations in the composition and differentiation of the mesenchymal cells of a newborn’s lungs, demonstrating a multifactorial pathogenesis of the disease. In addition, inflammation and oxidative stress are the common denominators of the mechanisms that contribute to BPD development. Vascular endothelial growth factor-A (VEGFA) constitutes the most prominent and best studied candidate for vascular development. Animal models have confirmed the important regulatory roles of epithelial-expressed VEGF in lung development and function. This educational review aims to discuss the inflammatory pathways in BPD onset for preterm newborns, focusing on the role of VEGFA and providing a summary of current and emerging evidence.

Funder

National Recovery and Resilience Plan

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3