Soluble guanylyl cyclase contributes to ventilator-induced lung injury in mice

Author:

Schmidt Eric P.,Damarla Mahendra,Rentsendorj Otgonchimeg,Servinsky Laura E.,Zhu Bing,Moldobaeva Aigul,Gonzalez Alfredo,Hassoun Paul M.,Pearse David B.

Abstract

High tidal volume (HVT) ventilation causes pulmonary endothelial barrier dysfunction. HVT ventilation also increases lung nitric oxide (NO) and cGMP. NO contributes to HVT lung injury, but the role of cGMP is unknown. In the current study, ventilation of isolated C57BL/6 mouse lungs increased perfusate cGMP as a function of VT. Ventilation with 20 ml/kg VT for 80 min increased the filtration coefficient ( Kf), an index of vascular permeability. The increased cGMP and Kf caused by HVT were attenuated by nitric oxide synthase (NOS) inhibition and in lungs from endothelial NOS knockout mice. Inhibition of soluble guanylyl cyclase (sGC) in wild-type lungs (10 μM ODQ) also blocked cGMP generation and inhibited the increase in Kf, suggesting an injurious role for sGC-derived cGMP. sGC inhibition also attenuated lung Evans blue dye albumin extravasation and wet-to-dry weight ratio in an anesthetized mouse model of HVT injury. Additional activation of sGC (1.5 μM BAY 41-2272) in isolated lungs at 40 min increased cGMP production and Kf in lungs ventilated with 15 ml/kg VT. HVT endothelial barrier dysfunction was attenuated with a nonspecific phosphodiesterase (PDE) inhibitor (100 μM IBMX) as well as an inhibitor (10 μM BAY 60-7550) specific for the cGMP-stimulated PDE2A. Concordantly, we found a VT-dependent increase in lung cAMP hydrolytic activity and PDE2A protein expression with a decrease in lung cAMP concentration that was blocked by BAY 60-7550. We conclude that HVT-induced endothelial barrier dysfunction resulted from a simultaneous increase in NO/sGC-derived cGMP and PDE2A expression causing decreased cAMP.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3