The association between regional transcriptome profiles and lung volumes in response to mechanical ventilation and lung injury

Author:

Song Yong,Yen Seiha,Preissner Melissa,Bennett Ellen,Dubsky Stephen,Fouras Andreas,Dargaville Peter A.,Zosky Graeme R.ORCID

Abstract

AbstractBackgroundLung inhomogeneity plays a pivotal role in the development of ventilator-induced lung injury (VILI), particularly in the context of pre-existing lung injury. The mechanisms that underlie this interaction are poorly understood. We aimed to elucidate the regional transcriptomic response to mechanical ventilation (MV), with or without pre-existing lung injury, and link this to the regional lung volume response to MV.MethodsAdult female BALB/c mice were randomly assigned into one of four groups: Saline, MV, lipopolysaccharide (LPS) or LPS/MV. Lung volumes (tidal volume, Vt; end-expiratory volume, EEV) were measured at baseline or after 2 h of ventilation using four-dimensional computed tomography (4DCT). Regional lung tissue samples corresponding to specific imaging regions were analysed for the transcriptome response by RNA-Seq. Bioinformatics analyses were conducted and the regional expression of dysregulated gene clusters was then correlated with the lung volume response.ResultsMV in the absence of pre-existing lung injury was associated with regional variations in tidal stretch. The addition of LPS also caused regional increases in EEV. We identified 345, 141 and 184 region-specific differentially expressed genes in response to MV, LPS and LPS/MV, respectively. Amongst these candidate genes, up-regulation of genes related to immune responses were positively correlated with increased regional tidal stretch in the MV group, while dysregulation of genes associated with endothelial barrier related pathways were associated with increased regional EEV and Vt when MV was combined with LPS. Further protein–protein interaction analysis led to the identification of two protein clusters representing the PI3K/Akt and MEK/ERK signalling hubs which may explain the interaction between MV and LPS exposure.ConclusionThe biological pathways associated with lung volume inhomogeneity during MV, and MV in the presence of pre-existing inflammation, differed. MV related tidal stretch induced up-regulation of immune response genes, while LPS combined with MV disrupted PI3K/Akt and MEK/ERK signalling.

Funder

National Health and Medical Research Council

Royal Hobart Hospital Research Foundation

the Multi-modal Australian Sciences Imaging and Visualization Environment

Australian Research Council

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3