Alveolar uptake of lipid and protein components of surfactant

Author:

Fisher A. B.1,Dodia C.1,Chander A.1

Affiliation:

1. Institut for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104–6068.

Abstract

We investigated the clearance of radiolabeled natural surfactant from the alveolar space of the isolated perfused rat lung. 3H, 35S-natural surfactant was prepared from rat lungs that had been perfused with [methyl-3H]choline and [35S]methionine. The biosynthesized material contained greater than 95% of 3H in phosphatidylcholine (PC) and approximately 80% of 35S in surfactant protein A. Natural surfactant (1 mumol PC) was instilled into the trachea; lungs were analyzed 5 min later or after 2 h perfusion to determine surfactant uptake, defined as lung lavage-resistant 3H or 35S [% of instilled disintegrations per minute(dpm)]. Uptake at 5 min was 31.4 +/- 0.37% for 3H and 31.9 +/- 0.85% for 35S (mean +/- SE, n = 4). At 2 h, uptake was 46.6 +/- 0.96% for 3H and 45.8 +/- 1.1% for 35S (n = 7). In the presence of 0.1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP), uptake at 2 h for both 3H and 35S was stimulated to approximately 57% of instilled dpm (n = 4). Microsomes and plasma membranes isolated from lung homogenates had a ratio of 3H to 35S that was similar to the original surfactant, whereas 3H/35S in isolated lamellar bodies was increased 2.1-fold. Degradation of lipid was indicated by finding 13.4 +/- 0.65% of homogenate 3H in the aqueous fraction of lung extract after 2 h perfusion; only 2.3 +/- 0.47% of 35S dpm were soluble in trichloroacetic acid, suggesting significantly less protein breakdown. Lipid degradation was increased more than twofold by 8-BrcAMP, whereas protein degradation was not changed significantly.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3