Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes

Author:

Budinger G. R.1,Chandel N.1,Shao Z. H.1,Li C. Q.1,Melmed A.1,Becker L. B.1,Schumacker P. T.1

Affiliation:

1. University of Chicago, Illinois 60637, USA.

Abstract

Studies of intact hearts suggest that cardiac myocytes may have the ability to reversibly suppress metabolic activity and energy demand in states of regional hypoperfusion. However, an ability to suppress respiration in response to hypoxia has never been demonstrated in isolated myocytes. To test this, isolated embryonic chick cardiac myocytes were exposed to progressive hypoxia while their rate of O2 uptake and concentrations of lactate, ATP, ADP, AMP, and phosphocreatine were measured. Compared with the value obtained at an oxygen tension (PO2) of 120 Torr, cellular O2 uptake decreased by 28 +/- 14% (SD) at PO2 = 50 Torr and by 64 +/- 25% at PO2 = 20 Torr (P < 0.05). This decrease was similar after 1 min or 2 h of hypoxia, was sustained for 16 h, and was completely reversible within 2 min after reoxygenation. The reduction in O2 uptake was associated with a decrease in the rate of ATP turnover, but no change in adenine nucleotide or phosphocreatine concentrations. In myocytes adherent to glass cover-slips, O2 uptake and contractile motion were decreased after 30-60 min at 50 and 20 Torr, compared with normoxic values. O2 uptake also was significantly decreased at 50 and 20 Torr in myocytes incubated with N,N,N',N'-tetramethyl-p-phenylenediamine, which suggests that the catalytic activity of cytochrome-c oxidase was partially inhibited during hypoxia. In summary, these results demonstrate that embryonic chick cardiac myocytes can suppress their rates of ATP demand, ATP utilization, and O2 uptake during moderate hypoxia through a mechanism that involves a reversible inhibition of cytochrome-c oxidase. This mechanism may represent a protective response to cellular hypoxia.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3