Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction

Author:

Ali Mir H.1,Pearlstein Daryl P.1,Mathieu Carol E.1,Schumacker Paul T.1

Affiliation:

1. Department of Medicine, The University of Chicago, Chicago, Illinois 60637

Abstract

Mechanical strain triggers a variety of cellular responses, but the underlying mechanotransduction process has not been established. Endothelial cells (EC) respond to mechanical strain by upregulating adhesion molecule expression through a signaling process involving reactive oxygen species (ROS), but the site of their generation is unknown. Mitochondria anchor to the cytoskeleton and could function as mechanotransducers by releasing ROS during cytoskeletal strain. In human umbilical vein EC (HUVEC), ROS production increased 221 ± 17% during 6 h of cyclic strain vs. unstrained controls. Mitochondrial inhibitors diphenylene iodonium or rotenone abrogated this response, whereas inhibitors of nitric oxide (NO) synthase (l-nitroarginine), xanthine oxidase (allopurinol), or NAD(P)H oxidase (apocynin) had no effect. The antioxidants ebselen and diethyldithiocarbamate inhibited the increase in ROS, but the NO scavenger Hb had no effect. Thus strain induces ROS release from mitochondria. In other studies, HUVEC were rendered mitochondria deficient (ρ0EC) to determine the requirement for electron transport in the response to strain. Strain-induced 2′7′-dichlorofluorescein fluorescence was attenuated by >80% in ρ0EC compared with HUVEC (43 ± 7 vs. 221 ± 17%). Treatment with cytochalasin D abrogated strain-induced ROS production, indicating a requirement for the actin cytoskeleton. Cyclic strain (6 h) increased VCAM-1 expression in wild-type but not ρ0EC. Increases in NF-κB activation and VCAM-1 mRNA expression during strain were prevented by antioxidants. These findings demonstrate that mitochondria function as mechanotransducers in endothelium by increasing ROS signaling, which is required for strain-induced increase in VCAM-1 expression via NF-κB.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3