Mechanical force induces mitophagy-mediated anaerobic oxidation in periodontal ligament stem cells

Author:

Zhang Zijie,Cui Shuyue,Fu Yajing,Wang Jixiao,Liu Jiani,Wei FulanORCID

Abstract

Abstract Background The preference for glucose oxidative mode has crucial impacts on various physiological activities, including determining stem cell fate. External mechanical factors can play a decisive role in regulating critical metabolic enzymes and pathways of stem cells. Periodontal ligament stem cells (PDLSCs) are momentous effector cells that transform mechanical force into biological signals during the reconstruction of alveolar bone. However, mechanical stimuli-induced alteration of oxidative characteristics in PDLSCs and the underlying mechanisms have not been fully elucidated. Methods Herein, we examined the expression of LDH and COX4 by qRT-PCR, western blot, immunohistochemistry and immunofluorescence. We detected metabolites of lactic acid and reactive oxygen species for functional tests. We used tetramethylrhodamine methyl ester (TMRM) staining and a transmission electron microscope to clarify the mitochondrial status. After using western blot and immunofluorescence to clarify the change of DRP1, we further examined MFF, PINK1, and PARKIN by western blot. We used cyclosporin A (CsA) to confirm the regulation of mitophagy and ceased the stretching as a rescue experiment. Results Herein, we ascertained that mechanical force could increase the level of LDH and decrease the expression of COX4 in PDLSCs. Simultaneously, the yield of reactive oxygen species (ROS) in PDLSC reduced after stretching, while lactate acid augmented significantly. Furthermore, mitochondrial function in PDLSCs was negatively affected by impaired mitochondrial membrane potential (MMP) under mechanical force, and the augment of mitochondrial fission further induced PRKN-dependent mitophagy, which was confirmed by the rescue experiments via blocking mitophagy. As a reversible physiological stimulation, the anaerobic preference of PDLSCs altered by mechanical force could restore after the cessation of force stimulation. Conclusions Altogether, our study demonstrates that PDLSCs under mechanical force preferred anaerobic oxidation induced by the affected mitochondrial dynamics, especially mitophagy. Our findings support an association between mechanical stimulation and the oxidative profile of stem cells, which may shed light on the mechanical guidance of stem cell maintenance and commitment, and lay a molecular foundation for periodontal tissue regeneration. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3