Albumin uptake and transcytosis in endothelial cells in vivo induced by albumin-binding protein

Author:

Vogel Stephen M.1,Minshall Richard D.1,Pilipović Milena1,Tiruppathi Chinnaswamy1,Malik Asrar B.1

Affiliation:

1. Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612

Abstract

The 60-kDa endothelial cell surface albumin-binding glycoprotein (gp60) is postulated to be a docking site for albumin that mediates the uptake of albumin and its transport in cultured microvessel endothelial cells. In the present study, we used an isolated Krebs-perfused rat lung preparation to address the in vivo role of gp60 in mediating albumin uptake and transport. Addition of primary anti-gp60 antibody to the perfusate followed by the secondary antibody to cross-link gp60 increased the vessel wall125I-albumin permeability-surface area ( PS) product 2.5-fold without affecting the capillary filtration coefficient ( K f,c; a measure of liquid permeability). In contrast, EDTA (5 mM), which induces interendothelial gap formation, produced parallel increases in both K f,c and125I-albumin PS product. Increasing perfusate albumin concentration to >1 g/100 ml (EC50 1.2 g/100 ml) was sufficient to block 125I-albumin PS product, indicating that the perfusate albumin competed with tracer albumin for transendothelial albumin transport. Cross-linking of gp60 in lungs perfused with saturating concentration of albumin resulted in a greater increase in 125I-albumin PS product, indicating that gp60 function was capable of being modulated. These results show that activation of gp60 in pulmonary microvessels induces albumin uptake and its transport through a nonhydraulic pathway that fits with a model of albumin permeability via the transcellular pathway.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3