Oxygen alters caveolin-1 and nitric oxide synthase-3 functions in ovine fetal and neonatal lung microvascular endothelial cells

Author:

John Theresa A.,Ibe Basil O.,Usha Raj J.

Abstract

We determined the effect of oxygen [∼100 Torr (normoxia) and ∼30–40 Torr (hypoxia)] on functions of endothelial nitric oxide (NO) synthase (NOS-3) and its negative regulator caveolin-1 in ovine fetal and neonatal lung microvascular endothelial cells (MVECs). Fetal NOS-3 activity, measured as NO production with 0.5–0.9 μM 4-amino-5-methylamino-2,7-difluorofluorescein, was decreased in hypoxia by 14.4% ( P < 0.01), inhibitable by the NOS inhibitor N-nitro-l-arginine, and dependent on extracellular arginine. Caveolar function, assessed as FITC-BSA (160 μg/ml) endocytosis, was decreased in hypoxia by 13.5% in fetal and 22.8% in neonatal MVECs ( P < 0.01). NOS-3 and caveolin-1 were physically associated, as demonstrated by coimmunoprecipitation and colocalization, and functionally associated, as shown by cross-activation of endocytosis, by their specific antibodies and activation of NOS by albumin. Caveolin peptide, containing the sequence for the PKC phosphorylation site of caveolin, and caveolin antiserum against the site increased NO production and endocytosis by 12.3% ( P < 0.05) and 16% ( P < 0.05), respectively, in normoxia and increased endocytosis by 25% ( P < 0.001) in hypoxia. PMA decreased NO production in normoxia and hypoxia by 19.32% ( P < 0.001) and 11.8% ( P < 0.001) and decreased endocytosis in normoxia by 20.35% ( P < 0.001). PKC kinase activity was oxygen sensitive, and threonine phosphorylation was enhanced in hypoxia. Pertussis toxin increased caveolar and NOS functions. These data support our hypothesis that increased Po2at birth promotes dissociation of caveolin-1 and NOS-3, with an increase in their activities, and that PKC and an oxygen-sensitive cell surface G protein-coupled receptor regulate caveolin-1 and NOS-3 interactions in fetal and neonatal lung MVECs.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology (medical),Pulmonary and Respiratory Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3