A metabolomics insight into the Cyclic Nucleotide Monophosphate signaling cascade in tomato under non-stress and salinity conditions

Author:

Miras-Moreno Begoña,Zhang Leilei,Senizza Biancamaria,Lucini LuigiORCID

Abstract

ABSTRACTCyclic Nucleotides Monophosphate (cNMP) are key signalling compounds whose role in plant cell signal transduction is till poorly understood. In this work we used sildenafil, a phosphodiesterase (PDE) inhibitor used in human, to amplify the signal cascade triggered by cNMP using tomato as model plant. Metabolomics was then used, together with plant growth and root architecture parameters, to unravel the changes elicited by PDE inhibition either under non-stress and 100 mM NaCl salinity conditions.The PDE inhibitor elicited a significant increase in biomass (+62%) and root length (+56%) under no stress conditions, and affected root architecture in terms of distribution over diameter classes. Together with cGMP, others cNMP were modulated by the treatment. Moreover, PDE inhibition triggered a broad metabolic reprogramming involving photosynthesis and secondary metabolism. A complex crosstalk network of phytohormones and other signalling compounds could be observed in treated plants. Nonetheless, metabolites related to redox imbalance processes and NO signalling could be highlighted in tomato following PDE application. Despite salinity damped down the growth-promoting effects of sildenafil, interesting implications in plant mitigation to stress-related detrimental effects could be observed.HIGHLIGHTThe role of Cyclic Nucleotides Monophosphate in plant cell signal transduction involves regulation of plant growth and architecture, together with a broad biochemical reprogramming of metabolism.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3