In Vitro Properties of Neurons in the Rat Pretectal Nucleus of the Optic Tract

Author:

Prochnow N.,Lee P.,Hall W. C.,Schmidt M.

Abstract

The nucleus of the optic tract (NOT) has been implicated in the initiation of the optokinetic reflex (OKR) and in the modulation of visual activity during saccades. The present experiments demonstrate that these two functions are served by separate cell populations that can be distinguished by differences in both their cellular physiology and their efferent projections. We compared the response properties of NOT cells in rats using target-directed whole cell patch-clamp recording in vitro. To identify the cells at the time of the recording experiments, they were prelabeled by retrograde axonal transport of WGA-apo-HRP-gold (15 nm), which was injected into their primary projection targets, either the ipsilateral superior colliculus (iSC), or the contralateral NOT (cNOT), or the ipsilateral inferior olive (iIO). Retrograde labeling after injections in single animals of either WGA-apo-HRP-gold with different particle sizes (10 and 20 nm) or two different fluorescent dyes distinguished two NOT cell populations. One projects to both the iSC and cNOT. These cells are spontaneously active in vitro and respond to intracellular depolarizations with temporally regular tonic firing. The other population projects to the iIO and consists of cells that show no spontaneous activity, respond phasically to intracellular depolarization, and show irregular firing patterns. We propose that the spontaneously active pathway to iSC and cNOT is involved in modulating the level of visual activity during saccades and that the phasically active pathway to iIO provides a short-latency relay from the retina to premotor mechanisms involved in reducing retinal slip.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3