Topographic Organization of Excitatory and Inhibitory Commissural Connections in the Superior Colliculi and Their Functional Roles in Saccade Generation

Author:

Takahashi M.1,Sugiuchi Y.1,Shinoda Y.1

Affiliation:

1. Department of Systems Neurophysiology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan

Abstract

Our electrophysiological study showed that there are topographic connections between excitatory and inhibitory commissural neurons (CNs) in one superior colliculus (SC) and tectoreticular neurons (TRNs) in the opposite SC. To obtain morphological evidence for these topographic commissural connections between the SCs, tracers were injected into various parts of the SC, the inhibitory burst neuron (IBN) area and Forel's field H (FFH), in the cat. Retrogradely labeled CNs were classified into three types according to their somatic areas and identified as GABA-positive or -negative immunohistochemically. Caudal SC injections labeled small GABA-positive CNs (<200 μm2) in the deep layers of the opposite rostral SC. Rostral SC injections mainly labeled medium-sized GABA-negative CNs (200–700 μm2) in the upper intermediate layer of the opposite rostral SC and small GABA-positive CNs in its deeper layers. Lateral SC injections labeled small GABA-positive CNs in the opposite medial SC and mainly medium-sized GABA-negative CNs in its lateral part. Medial SC injections labeled small GABA-positive CNs in the lateral SC and medium-sized GABA-negative CNs in the medial SC. In comparison, TRNs projecting to the FFH or IBN region were large (>700 μm2) and medium-sized. Many of the medium-sized GABA-negative CNs were TRNs projecting to the FFH. These results indicate that mirror-symmetric excitatory pathways link medial to medial (upper field) and lateral to lateral (lower field) parts of the SCs, whereas upper and lower field representations are linked by reciprocal inhibitory pathways in the tectal commissure. These connections presumably play important roles in conjugate upward and downward vertical saccades.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3