Author:
Gritsenko V.,Yakovenko S.,Kalaska J. F.
Abstract
Online control of movement requires complex integration of predictive central feedforward and peripheral sensory feedback signals. We studied the hand trajectories of human subjects pointing to visual targets that abruptly changed locations by different amounts and modeled the mechanism of rapid online correction using a dynamic model of a two-joint limb. Small unperceived and large detected target displacements could be attributed to different origins (motor execution errors vs. environmental changes, respectively) and compensated differently. However, the behavioral findings indicate that the rapid feedback pathway is recruited regardless of the amplitude or subjective awareness of target displacement and that the size of the earliest correction is always proportional to the amplitude of the target displacement over the tested range of perturbations. The modeling findings suggest that the rapid online corrections can be accomplished by superimposing a dynamically appropriate error correction signal onto the outgoing feedforward motor command to the original target. Furthermore, the modeling shows that the online correction mechanism must include compensation for the dynamic mechanical properties of the limb and for sensory delays in its error-correction pathway.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献