Differences in left and right lower limb control strategies in coping with visual tracking tasks during bipedal standing

Author:

Minamisawa Tadayoshi,Chiba Noboru,Suzuki Eizaburo

Abstract

IntroductionDifferences in motor control between the lower limbs may influence the risk of sports injury and recovery from rehabilitation. In this study, differences in the visual feedback ability of the left and right lower limbs were assessed using visual target tracking tasks.MethodsThirty-four healthy young subjects (aged 20.4 ± 1.2 years) were asked to move their bodies back and forth while tracking a visual target displayed on a monitor in front of them for 30 s. The two target motions were sinusoidal (i.e., predictable patterns) and more complex (random) patterns. To assess the ability of the lower limbs to follow visual target tracking, antero-posterior CoP (right limb, CoPap–r; left limb, CoPap–l) and medio-lateral CoP (right limb, CoPml–r; left limb, CoPml–l) data were measured using a stabilometer. Tracking ability by visual feedback ability was calculated as the difference in displacement between the target signal and the trajectories of the right and left pressure centers as trapezoidal areas, and a smaller sum of area (SoA) over the entire measurement time was defined as a greater tracking ability.ResultsRegarding the SoA in the anterior-posterior CoP, the mean SoA in the sinusoidal and random tasks was significantly lower in the CoP-r data than in the CoP-l data, indicating that the right lower limb had a more remarkable ability to follow visual target tracking. Regarding the SoA in the medial-lateral direction (CoP), the mean SoA in the sinusoidal and random tasks did not significantly differ between the two legs.DiscussionThe right lower limb may have a tracking function activated by the target signal when responding to visual stimuli. Identifying the motor strategies of each lower limb in response to visual stimuli will not only help identify potential differences between each lower limb but also suggest the possibility of enhancing the role of each lower limb in balance control.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3