Affiliation:
1. Department of Physiology, University of Munich, D-80336 Munich
2. Department of Physiology, University of Kiel, D-24098 Kiel, Germany
Abstract
Whole cell recordings from acutely isolated rat neocortical pyramidal cells were performed to study the kinetics and the mechanisms of short-term desensitization of G-protein-activated, inwardly rectifying K+ (GIRK) currents during prolonged application (5 min) of baclofen, adenosine, or serotonin. Most commonly, desensitization of GIRK currents was characterized by a biphasic time course with average time constants for fast and slow desensitization in the range of 8 and 120 s, respectively. The time constants were independent of the agonist used to evoke the current. The biphasic time course was preserved in perforated-patch recordings, indicating that neither component of desensitization is attributable to cell dialysis. Desensitization of GIRK currents displayed a strong heterologous component in that application of a second agonist substantially reduced the responsiveness to a test agonist. Fast desensitization, but not slow desensitization, was lost in cells loaded with GDP, suggesting that the hydrolysis cycle of G proteins might underlie the initial, rapid current decline. Hydrolysis of phosphatidylinositol biphosphate is an unlikely candidate underlying short-term desensitization, because both components of desensitization were preserved in the presence of the phospholipase C inhibitor U73122. We conclude that short-term desensitization does neither result from receptor downregulation nor from altered channel gating but might involve modifications of the G-protein-dependent pathway that serves to translate receptor activation into channel opening.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献