Sensorimotor transformation in the cat's vestibuloocular reflex system. I. Neuronal signals coding spatial coordination of compensatory eye movements

Author:

Graf W.1,Baker J.1,Peterson B. W.1

Affiliation:

1. Rockefeller University, New York 10021.

Abstract

1. Coordinate transformation between vestibular and oculomotor reference frames is required to produce compensatory, vestibuloocular reflex (VOR) eye movements in view of the differing, although similar, peripheral three-dimensional geometry of the semicircular canals and the extraocular muscles. This transformation requires convergence of canal-specific signals at some level in the VOR arc. 2. To investigate the networks that underlie the transformation between oculomotor and vestibular reference frames for spatial coordination of compensatory eye movements, we recorded intracellularly in decerebrate cats from 93 identified second-order vestibulooculomotor and abducens internuclear neurons in the medial longitudinal fasciculus (MLF) between abducens and trochlear nuclei and characterized their spatial response properties. Neurons were classified according to whether they were activated from the labyrinth ipsi- or contralateral to the recording site and according to the canal from which they received their strongest input. Our data revealed neurons that carried single- and multiple-canal signals. 3. Twenty-two neurons received their primary input from the ipsi- or contralateral anterior canal (AC). Ten nonconvergent AC neurons responded maximally to rotation in a plane within 10 degrees of the AC plane, whereas 6 AC neurons received sufficient convergent input from the orthogonal vertical canals to shift their plane of maximum response > 10 degrees from the AC plane. Of 29 ipsi- and contralateral posterior canal (PC) neurons, 9 were non-convergent, whereas 13 received sufficient convergent input from the orthogonal vertical canals to shift their response plane > 10 degrees from the PC plane. The rotational responses of 6 AC and 12 PC neurons indicated that they received convergent input from the horizontal canals. However, when these responses were averaged, the horizontal responses tended to cancel, leaving little net population response to horizontal rotation. We also encountered 19 ascending axons of second-order neurons activated primarily from the horizontal canals. Nine of these received significant input from the vertical canals, but the mean population response was within 4 degrees of the horizontal canal plane. 4. Our results demonstrate single canal responses and specific canal-canal convergence within the population of vertical vestibulooculomotor neurons. This convergence is thought to participate in the coordinate transformation within the specific geometry of the VOR system. The data indicate response shifts of a population of AC neurons toward the plane of the inferior oblique muscle, and of a population of PC neurons toward the plane of the superior oblique muscle. Conspicuously absent are neurons that fall into the plane of either the superior rectus or the inferior rectus muscles. (ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3