Comparison of three models of saccade disconjugacy in strabismus

Author:

Walton Mark M. G.1,Mustari Michael J.123

Affiliation:

1. Washington National Primate Research Center, University of Washington, Seattle, Washington

2. Department of Ophthalmology, University of Washington, Seattle, Washington

3. Department of Biological Structure, University of Washington, Seattle, Washington

Abstract

In pattern strabismus the horizontal and vertical misalignments vary with eye position along the orthogonal axis. The disorder is typically described in terms of overaction or underaction of oblique muscles. Recent behavioral studies in humans and monkeys, however, have reported that such actions are insufficient to fully explain the patterns of directional and amplitude disconjugacy of saccades. There is mounting evidence that the oculomotor abnormalities associated with strabismus are at least partially attributable to neurophysiological abnormalities. A number of control systems models have been developed to simulate the kinematic characteristics of saccades in normal primates. In the present study we sought to determine whether these models could simulate the abnormalities of saccades in strabismus by making two assumptions: 1) in strabismus the burst generator gains differ for the two eyes and 2) abnormal crosstalk exists between the horizontal and vertical saccadic circuits in the brain stem. We tested three models, distinguished by the location of the horizontal-vertical crosstalk. All three models were able to simulate amplitude and directional saccade disconjugacy, postsaccadic drift, and a pattern strabismus for static fixation, but they made different predictions about the dynamics of saccades. By assuming that crosstalk occurs at multiple nodes, the Distributed Crosstalk Model correctly predicted the dynamics of saccades. These new models make additional predictions that can be tested with future neurophysiological experiments. NEW & NOTEWORTHY Over the past several decades, numerous control systems models have been devised to simulate the known kinematic features of saccades in normal primates. These models have proven valuable to neurophysiology, as a means of generating testable predictions. The present manuscript, as far as we are aware, is the first to present control systems models to simulate the known abnormalities of saccades in strabismus.

Funder

HHS | NIH | National Eye Institute (NEI)

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3