Affiliation:
1. Department of Behavioral Neuroscience, University of Pittsburgh,Pennsylvania 15260.
Abstract
1. Single units were recorded extracellularly in the turtle's cerebellar cortex from an isolated brain preparation during visual stimulation. Only a small fraction of the isolated units responded to visual stimuli. For these visually responsive units, the most effective visual stimulus was a moving check pattern that covered the entire surface of the retinal eyecup. The visually responsive units had little or no spontaneous spike activity, nor were they driven by flashes of diffuse light or stationary patterns. 2. All the visually responsive units were direction sensitive and were driven exclusively by the contralateral eye. This direction tuning was well fit by a limacon model (mean correlation coefficient, 0.89). The distribution of the entire sample indicates a slight preponderance of upward preferred directions. 3. The direction tuning of these cerebellar units was independent of stimulus contrast or the pattern's configuration (such as checkerboards or random check or dot patterns). In the preferred direction, a unit's spike frequency increased monotonically as a function of stimulus velocity until approximately 10 degrees/s, but remained direction sensitive (relative to the opposite direction) at speeds as fast as 100 degrees/s. 4. In some experiments the ventrocaudal brain stem was transected in the frontal plane just caudal to the cerebellar peduncles. Although this lesion presumably removes climbing fiber input from the inferior olivary nuclei, the visual-response properties in the cerebellar cortex were unaffected. 5. The response properties of these units indicate that they encode retinal slip information in the cerebellum.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献