Spatiotemporal Tuning of Optic Flow Inputs to the Vestibulocerebellum in Pigeons: Differences Between Mossy and Climbing Fiber Pathways

Author:

Winship Ian R.,Hurd Peter L.,Wylie Douglas R. W.

Abstract

The pretectum, accessory optic system (AOS), and vestibulocerebellum (VbC) have been implicated in the analysis of optic flow and generation of the optokinetic response. Recently, using drifting sine-wave gratings as stimuli, it has been shown that pretectal and AOS neurons exhibit spatiotemporal tuning. In this respect, there are two groups: fast neurons, which prefer low spatial frequency (SF) and high temporal frequency (TF) gratings, and slow neurons, which prefer high SF–low TF gratings. In pigeons, there are two pathways from the pretectum and AOS to the VbC: a climbing fiber (CF) pathway to Purkinje cells (P cells) via the inferior olive and a direct mossy fiber (MF) pathway to the granular layer (GL). In the present study, we assessed spatiotemporal tuning in the VbC of ketamine-anesthetized pigeons using standard extracellular techniques. Recordings were made from 17 optic-flow-sensitive units in the GL, presumably granule cells or MF rosettes, and the complex spike activity (CSA) of 39 P-cells, which reflects CF input. Based on spatiotemporal tuning to gratings moving in the preferred direction, eight GL units were classified as fast units, with a primary response to low SF–high TF gratings (mean = 0.13 cpd/8.24 Hz), whereas nine were slow units preferring high SF–low TF gratings (mean = 0.68 cpd/0.30 Hz). CSA was almost exclusively tuned to slow gratings (mean = 0.67 cpd/0.35 Hz). We conclude that MF input to the VbC is from both fast and slow cells in the AOS and pretectum, whereas the CF input is primarily tuned to slow gratings.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3