Spatial range and laminar structures of neuronal correlations in the cat primary visual cortex

Author:

Tanaka Hiroki12,Tamura Hiroshi1,Ohzawa Izumi1

Affiliation:

1. Graduate School of Frontier Biosciences, Osaka University, Yamadaoka, Suita, Osaka, Japan; and

2. Faculty of Computer Science and Engineering, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, Japan

Abstract

Activities of nearby cortical cells show temporal correlation on many timescales. In particular, previous studies of primary visual cortex (V1) indicate precise correlation on a timescale of milliseconds and loose correlation on a timescale of tens of milliseconds. To characterize cortical organization of these correlations, we investigated their spatial extent, laminar organization, and dependence on receptive field (RF) similarities. By simultaneously recording neuronal activity across layers within a horizontal distance of 1.2 mm, we found that loose correlation was widely observed for neuronal pairs horizontally or vertically separated over the whole distance range regardless of the layers. The incidence of loose correlation tended to be lower in layer 4 than in other layers. Loose correlation also accompanied a consistent delay in firing that was monotonically related to the vertical, but not horizontal, distance between the paired neurons. In contrast, the spatial range in which precise correlation was observed was more limited, with its incidence dropping sharply within 0.4 mm in both vertical and horizontal directions for all layers. With these spatial ranges, precise correlation was typically observed for pairs of neurons in the same layers, while loose correlation was often present even for pairs of neurons in widely separated layers. Furthermore, precise correlation was predominantly seen for pairs with similar RF properties, whereas loose correlation was seen even in pairs showing dissimilar properties. Our results show that neuronal correlations in V1 show markedly different structures for horizontal and vertical dimensions depending on correlation timescales.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3