How strong are correlations in strongly recurrent neuronal networks?

Author:

Darshan Ran,Vreeswijk Carl van,Hansel David

Abstract

ABSTRACTCross-correlations in the activity in neural networks are commonly used to characterize their dynamical states and their anatomical and functional organizations. Yet, how these latter network features affect the spatiotemporal structure of the correlations in recurrent networks is not fully understood. Here, we develop a general theory for the emergence of correlated neuronal activity from the dynamics in strongly recurrent networks consisting of several populations of binary neurons. We apply this theory to the case in which the connectivity depends on the anatomical or functional distance between the neurons. We establish the architectural conditions under which the system settles into a dynamical state where correlations are strong, highly robust and spatially modulated. We show that such strong correlations arise if the network exhibits an effective feedforward structure. We establish how this feedforward structure determines the way correlations scale with the network size and the degree of the connectivity. In networks lacking an effective feedforward structure correlations are extremely small and only weakly depend on the number of connections per neuron. Our work shows how strong correlations can be consistent with highly irregular activity in recurrent networks, two key features of neuronal dynamics in the central nervous system.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3