Endogenous d-Serine Contributes to NMDA-Receptor–Mediated Light-Evoked Responses in the Vertebrate Retina

Author:

Gustafson Eric C.,Stevens Eric R.,Wolosker Herman,Miller Robert F.

Abstract

We have combined electrophysiology and chemical separation and measurement techniques with capillary electrophoresis (CE) to evaluate the role of endogenous d-serine as an NMDA receptor (NMDAR) coagonist in the salamander retina. Electrophysiological experiments were carried out using whole cell recordings from retinal ganglion cells and extracellular recordings of the proximal negative response (PNR), while bath applying two d-serine degrading enzymes, including d-amino acid oxidase (DAAO) and d-serine deaminase (DsdA). The addition of either enzyme resulted in a significant and rapid decline in the light-evoked responses observed in ganglion cell and PNR recordings. The addition of exogenous d-serine in the presence of the enzymes restored the light-evoked responses to the control or supracontrol amplitudes. Heat-inactivated enzymes had no effect on the light responses and blocking NMDARs with AP7 eliminated the suppressive influence of the enzymes as well as the response enhancement normally associated with exogenous d-serine application. CE was used to separate amino acid racemates and to study the selectivity of DAAO and DsdA against d-serine and glycine. Both enzymes showed high selectivity for d-serine without significant effects on glycine. Our results strongly support the concept that endogenous d-serine plays an essential role as a coagonist for NMDARs, allowing them to contribute to the light-evoked responses of retinal ganglion cells. Furthermore under our experimental conditions, these coagonist sites are not saturated so that modulation of NMDAR sensitivity can be achieved with further modulaton of d-serine.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3