Sources of Calcium at Connexin 36 Gap Junctions in the Retina

Author:

Lee Yuan-Hao,Kothmann W. Wade,Lin Ya-Ping,Chuang Alice Z.,Diamond Jeffrey S.ORCID,O’Brien JohnORCID

Abstract

AbstractSynaptic plasticity is a fundamental feature of the CNS that controls the magnitude of signal transmission between communicating cells. Many electrical synapses exhibit substantial plasticity that modulates the degree of coupling within groups of neurons, alters the fidelity of signal transmission, or even reconfigures functional circuits. In several known examples, such plasticity depends on calcium and is associated with neuronal activity. Calcium-driven signaling is known to promote potentiation of electrical synapses in fish Mauthner cells, mammalian retinal AII amacrine cells, and inferior olive neurons, and to promote depression in thalamic reticular neurons. To measure local calcium dynamicsin situ, we developed a transgenic mouse expressing a GCaMP calcium biosensor fused to Connexin 36 (Cx36) at electrical synapses. We examined the sources of calcium for activity-dependent plasticity in retina slices using confocal or Super-Resolution Radial Fluctuations imaging. More than half of Cx36-GCaMP gap junctions responded to puffs of glutamate with transient increases in fluorescence. The responses were strongly dependent on NMDA receptors, in keeping with known activity-dependent signaling in some amacrine cells. We also found that some responses depended on the activity of voltage-gated calcium channels, representing a previously unrecognized source of calcium to control retinal electrical synaptic plasticity. The high prevalence of calcium signals at electrical synapses in response to glutamate application indicates that a large fraction of electrical synapses has the potential to be regulated by neuronal activity. This provides a means to tune circuit connectivity dynamically based on local activity.

Funder

Louisa Stude Sarofim endowment

HHS | NIH | National Eye Institute

HHS | NIH | National Institute of Neurological Disorders and Stroke

Publisher

Society for Neuroscience

Subject

General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3