Desynchronization does not contribute to intracortical inhibition and facilitation: a paired-pulse paradigm study combined with TST

Author:

Caranzano L.12,Stephan M. A.1ORCID,Herrmann F. R.3,Benninger D. H.1ORCID

Affiliation:

1. Neurology Service, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland;

2. Faculté de Biologie et de Médecine, Doctoral School, Université de Lausanne, Lausanne, Switzerland; and

3. Division of Geriatrics, Department of Internal Medicine, Rehabilitation, and Geriatrics, University Hospitals and University of Geneva, Geneva, Switzerland

Abstract

The paired-pulse (PP) transcranial magnetic stimulation (TMS) paradigms allow the exploration of the motor cortex physiology. The triple stimulation technique (TST) improves conventional TMS by reducing effects of desynchronization of motor neuron discharges allowing a precise evaluation of the corticospinal conduction. The objective of our study was to explore PP TMS paradigms combined with the TST to study whether the desynchronization contributes to these phenomena and whether the combined TMS-TST protocol could improve the consistency of responses. We investigated the PP paradigms of short intracortical inhibition (SICI) with 2 ms interstimulus interval (ISI) and of intracortical facilitation (ICF) with 10 ms ISI in 22 healthy subjects applying either conventional TMS alone or combined with the TST protocol. The results of the PP paradigms combined with the TST of SICI and ICF do not differ from those with conventional TMS. However, combining the PP paradigm with the TST reduces their variability. These results speak against a contribution of the desynchronization of motor neuron discharges to the PP paradigms of SICI and ICF. Combining the PP TMS paradigm with the TST may improve their consistency, but the interindividual variability remains such that it precludes their utility for clinical practice. NEW & NOTEWORTHY Combining the triple stimulation technique with the paired-pulse stimulation paradigm improves the consistency of short intracortical inhibition and facilitation and could be useful in research, but the interindividual variability precludes their utility for clinical practice. Our findings do not suggest that desynchronization of descending discharges following transcranial magnetic stimulation contributes to short intracortical inhibition or intracortical facilitation.

Funder

None

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3