Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey

Author:

Ohta Y.1,Grillner S.1

Affiliation:

1. Nobel Institute for Neurophysiology, Karolinska Institutet, Stockholm,Sweden.

Abstract

1. The reticulospinal neurons in the lamprey posterior rhombencephalic reticular nucleus (PRRN) and their projections to different types of spinal neurons have been investigated by the use of simultaneous paired intracellular recordings from one pre- and one postsynaptic cell. PRRN is of particular importance for the initiation of locomotion. 2. Intracellular stimulation of single PRRN neurons produced monosynaptic excitatory postsynaptic potentials (EPSPs) in simultaneously recorded motoneurons and spinal premotor interneurons of both the excitatory and inhibitory type. Individual PRRN neurons produced EPSPs in several different types of target cells, as revealed by signal averaging. Each single PRRN neuron had extensive monosynaptic connections to approximately 73% of the motoneuronal population. Conversely, several PRRN neurons converge on individual spinal neurons. The average amplitude of the EPSPs was 0.43 +/- 0.40 (SD) mV. The EPSPs varied in time course (time to peak = 7.5 +/- 2.8 ms; duration at one-half peak amplitude = 21.9 +/- 18.1 ms). 3. The EPSPs produced by reticulospinal cells were composed of either exclusively chemical, exclusively electrical, or mixed chemical and electrical components. The electrical EPSPs remained when the ordinary physiological solution was substituted for one without Ca2+ but with Mn2+. The chemical component of the EPSPs was always depressed when a broad-spectrum excitatory amino acid (EAA) antagonist, such as kynurenic acid, was applied, suggesting that the chemical component was because of EAA transmission. The chemical EPSP could have two components, one late, suppressed by N-methyl-D-aspartate (NMDA) antagonists, and one early because of activation of kainate/quisqualate receptors. 4. Three-dimensional reconstructions of Lucifer yellow-filled PRRN neurons were performed with a confocal laser scanning microscope. PRRN neurons producing monosynaptic excitatory amino acid EPSPs were found to have a fusiform cell body located near the surface of the fourth ventricle and an extensive fanlike dendritic tree extending to the ventral and lateral margin of the brain stem within the basal plate. The axons descend in the lateral funiculi of the spinal cord. 5. PRRN neurons utilizing EAA transmission are active during fictive locomotion. They presumably initiate and reinforce ongoing spinal locomotor activity by monosynaptically increasing the general excitability of the spinal premotor interneurons of the spinal locomotor networks by means of their extensive divergent and convergent monosynaptic connections.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3