Abstract
AbstractLocomotion empowers animals to move. Locomotor-initiating signals from the brain are funneled through descending neurons in the brainstem that act directly on spinal locomotor circuits. Little is known in mammals about which spinal circuits are targeted by the command and how this command is transformed into rhythmicity in the cord. Here we address these questions leveraging a mouse brainstem-spinal cord preparation from either sex that allows locating the locomotor command neurons with simultaneous Ca2+ imaging of spinal neurons. We show that a restricted brainstem area – encompassing the lateral paragigantocellular nucleus (LPGi) and caudal ventrolateral reticular nucleus (CVL) – contains glutamatergic neurons which directly initiate locomotion. Ca2+ imaging captures the direct LPGi/CVL locomotor initiating command in the spinal cord and visualizes spinal glutamatergic modules that execute the descending command and its transformation into rhythmic locomotor activity. Inhibitory spinal networks are recruited in a distinctly different pattern. Our study uncovers the principal logic of how spinal circuits implement the locomotor command using a distinct modular organization.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Reference108 articles.
1. Grillner, S. The motor infrastructure: from ion channels to neuronal networks. Nat. Rev. Neurosci. 4, 573–586 (2003).
2. Kiehn, O. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17, 224–238 (2016).
3. Goulding, M. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10, 507–518 (2009).
4. Shik, M. L., Severin, F. V. & Orlovsky, G. N. Control of walking and running by means of electrical stimulation of the mesencephalon. Electroencephalogr. Clin. Neurophysiol. 26, 549 (1969).
5. Jordan, L. M., Liu, J., Hedlund, P. B., Akay, T. & Pearson, K. G. Descending command systems for the initiation of locomotion in mammals. Brain Res. Rev. 57, 183–191 (2008).
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献