Generation of motor program diversity and variability through inhibitory circuit motifs in theDrosophilalarval locomotor system

Author:

Francis Jacob,Gibeily Caius R.,Smith William V.,Petropoulos Isabel S.,Anderson Michael,Heitler William J.,Prinz Astrid A.,Pulver Stefan R.ORCID

Abstract

AbstractHow do neural networks generate and regulate diversity and variability in motor outputs with finite cellular components? Here we examine this problem by exploring the role that inhibitory neuron motifs play in generating mixtures of motor programs in the segmentally organisedDrosophilalarval locomotor system. We developed a computational model that is constrained by experimental calcium imaging data. The model comprises single-compartment cells with a single voltage-gated calcium current, which are interconnected by graded excitatory and inhibitory synapses. Local excitatory and inhibitory neurons form conditional oscillators in each hemisegment. Surrounding architecture reflects key aspects of inter- and intrasegmental connectivity motifs identified in the literature. The model generates metachronal waves of activity that recapitulate key features of fictive forwards and backwards locomotion, as well as bilaterally asymmetric activity in anterior regions that represents fictive head sweeps. The statistics of inputs to competing command-like motifs, coupled with inhibitory motifs that detect activity across multiple segments generate network states that promote diversity in motor outputs, while at the same time preventing maladaptive overlap in motor programs. Overall, the model generates testable predictions for connectomics and physiological studies while providing a platform for uncovering how inhibitory circuit motifs underpin generation of diversity and variability in motor systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3