Effects of low concentrations of 4-aminopyridine on CA1 pyramidal cells of the hippocampus

Author:

Perreault P.1,Avoli M.1

Affiliation:

1. Montreal Neurological Institute, Department of Neurology andNeurosurgery, McGill University, Quebec, Canada.

Abstract

1. Intracellular and extracellular recording techniques were used to study the effects of bath application of 4-aminopyridine (4-AP) on pyramidal cells of the CA1 subfield of rat hippocampal slices maintained in vitro. The concentration of 4-AP used in most experiments was 50 microM. However, similar results were obtained with a concentration ranging from 5 to 100 microM. 2. Following 4-AP application, cells impaled with K-acetate-filled microelectrodes hyperpolarized by an average of 2.6 mV (from -68.7 to -71.3 mV, P less than or equal to 0.01). This change was accompanied by the appearance of high-frequency spontaneous hyperpolarizations. Conversely, when KCl-filled microelectrodes were used, an average depolarization of 5.8 mV [from -73.1 to -67.3 mV, not significant (NS)] associated with the occurrence of repetitive depolarizing potentials was observed. In both cases, these changes were concomitant with a small decrease in membrane input resistance, which was statistically significant only for cells impaled with K-acetate-filled microelectrodes. When synaptic transmission was blocked by tetrodotoxin (TTX), 4-AP induced in cells studied with K-acetate microelectrodes an average depolarization of 2.4 mV (from -62.8 to -60.4 mV, P less than or equal to 0.01) accompanied by a small increase in input resistance (from 32.0 to 35.8 M omega, P less than or equal to 0.05). High-frequency spontaneous potentials failed to occur under these conditions. During 4-AP application, the threshold and the latency of action potentials elicited by a depolarizing current pulse increased in 36% of the neurons studied (n = 14). 3. The amplitude of the stratum (s.) radiatum-induced excitatory postsynaptic potential (EPSP) was augmented by 4-AP. Both the early and late inhibitory postsynaptic potentials (IPSPs) evoked by orthodromic stimuli were also increased in amplitude and duration. In addition, a late (peak latency, 150-600 ms) and long-lasting (duration, 600-1,500 ms) depolarizing potential appeared between the early and the late IPSPs and progressively increased until it partially masked these hyperpolarizations. This long-lasting depolarization (LLD) could also be induced by antidromic stimulation, although in this case it was preceded by an additional, fast-rising, brief depolarization. 4. A similar brief depolarization preceded the orthodromically induced LLD in 69% of the neurons bathed in the presence of 4-AP. The average value of the peak latency of this potential was 62 +/- 27 (SD) ms for orthodromic and 110 +/- 70 ms for antidromic responses.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3