Ectopic burst induced by blockade of axonal potassium channels on the mouse hippocampal mossy fiber

Author:

Kamiya Haruyuki

Abstract

A potassium channel blocker 4-AP has been shown to exert pronounced convulsive action to generate burst firings when applied to hippocampal slices. However, it remains unclear how the blockade of potassium channels leads to the generation of burst firings. One possibility is ectopic spiking from the sites different from those for physiological spike initiation at the axon initial segment, as suggested for several experimental models of epileptogenesis in vitro. To test for possible ectopic spiking at the distal axon by 4-AP application, direct recordings from large mossy fiber terminals were made with the loose-patch clamp technique in mouse hippocampal slices. To localize the action of 4-AP on the distal axon, focal perfusion, as well as micro-cut to disconnect soma and distal axons, were adopted. Focal application of 4-AP on the distal portion of mossy fibers reliably induced burst discharges of the mossy fiber terminals. Photochemical blockade of potassium channels at distal axons, by the application of RuBi-4-AP, a visible wavelength blue light-sensitive caged compound, and the illumination of blue light caused robust bursting activity originating from distal axons. Computer simulation suggested that local blockade of axonal potassium channels prolongs the duration of action potentials and thereby causes reverberating spiking activities at distal axons and subsequent antidromic propagation toward the soma. Taken together, it was suggested that local blockade of voltage-dependent potassium channels in distal axons by application of 4-AP is sufficient to cause a hyperexcitable state of hippocampal mossy fiber axons.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3