Low-Calcium Epileptiform Activity in the Hippocampus In Vivo

Author:

Feng Zhouyan1,Durand Dominique M.1

Affiliation:

1. Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106

Abstract

It has been clearly established that nonsynaptic interactions are sufficient for generating epileptiform activity in brain slices. However, it is not known whether this type of epilepsy model can be generated in vivo. In this paper we investigate low-calcium nonsynaptic epileptiform activity in an intact hippocampus. The calcium chelator EGTA was used to lower [Ca2+]o in the hippocampus of urethane anesthetized rats. Spontaneous and evoked field potentials in CA1 pyramidal stratum and in CA1 stratum radiatum were recorded using four-channel silicon recording probes. Three different types of epileptic activity were observed while synaptic transmission was gradually blocked by a decline in hippocampal [Ca2+]o. A short latency burst, named early-burst, occurred during the early period of EGTA application. Periodic slow-waves and a long latency high-frequency burst, named late-burst, were seen after synaptic transmission was mostly blocked. Therefore these activities appear to be associated with nonsynaptic mechanisms. Moreover, the slow-waves were similar in appearance to the depolarization potential shifts in vitro with low calcium. In addition, excitatory postsynaptic amino acid antagonists could not eliminate the development of slow-waves and late-bursts. The slow-waves and late-bursts were morphologically similar to electrographic seizure activity seen in patients with temporal lobe epilepsy. These results clearly show that epileptic activity can be generated in vivo in the absence of synaptic transmission. This type of low-calcium nonsynaptic epilepsy model in an intact hippocampus could play an important role in revealing additional mechanisms of epilepsy disorders and in developing novel anti-convulsant drugs.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3