Basilar Membrane Vibration in the Gerbil Hemicochlea

Author:

Richter Claus-Peter1,Evans Burt N.2,Edge Roxanne2,Dallos Peter2

Affiliation:

1. Zentrum der Physiologie, J.W. Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany

2. Departments of Neurobiology and Physiology and Communication Sciences and Disorders, Auditory Physiology Laboratory (The Hugh Knowles Center), The Institute of Neuroscience, Northwestern University, Evanston, Illinois 60208; and

Abstract

Richter, Claus-Peter, Burt N. Evans, Roxanne Edge, and Peter Dallos. Basilar membrane vibration in the gerbil hemicochlea. J. Neurophysiol. 79: 2255–2264, 1998. Excised gerbil cochleae were cut along the mid-modiolar plane (hemicochlea). Along one-half turn of this preparation, fluorescent microbeads were placed on the basilar membrane (BM). The BM was vibrated with click stimuli (50 μs) produced mechanically by a piezo pusher. The stimulus delivery probe could be positioned either more apical or more basal from the beads. Vibration patterns were measured with a wide bandwidth photomultiplier from the movements of the beads. When the probe was positioned more basal, the responses to click stimuli were brief, damped sinusoids. According to the fast Fourier transforms (FFTs) of the averaged time wave forms, the best frequency between successive beads decreased toward the apex (0.8 octave/mm). Sharpness of tuning of the normalized FFT spectra (NQ10dB) on average was 1.5. Response amplitude at a fixed input level, measured at different beads away from the stimulation site, dropped exponentially (58 dB/mm). In addition, for each individual bead, amplitude dropped linearly with decreasing stimulus intensity. In experiments where the stimulating probe was placed more apical, two major properties were observed: first, beads revealed only the spectral components present in the motion of the probe. Second, magnitude reduction of the displacement of the cochlear partition was greater, on average 155 dB/mm, indicating a lack of significant propagation in the reverse direction.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3