Hydromechanical Structure of the Cochlea Supports the Backward Traveling Wave in the Cochlea In Vivo

Author:

Chen Fangyi12ORCID,Zha Dingjun23ORCID,Yang Xiaojie1,Hubbard Allyn4,Nuttall Alfred25

Affiliation:

1. Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

2. Oregon Hearing Research Center, Department of Otolaryngology and Head and Neck Surgery, Oregon Health and Science University, Portland, OR 97239, USA

3. Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China

4. Department of Electrical & Computer Engineering, Boston University, Boston, MA 02215, USA

5. Kresge Hearing Research Institute, The University of Michigan, Ann Arbor, MI 48109, USA

Abstract

The discovery that an apparent forward-propagating otoacoustic emission (OAE) induced basilar membrane vibration has created a serious debate in the field of cochlear mechanics. The traditional theory predicts that OAE will propagate to the ear canal via a backward traveling wave on the basilar membrane, while the opponent theory proposed that the OAE will reach the ear canal via a compression wave. Although accepted by most people, the basic phenomenon of the backward traveling wave theory has not been experimentally demonstrated. In this study, for the first time, we showed the backward traveling wave by measuring the phase spectra of the basilar membrane vibration at multiple longitudinal locations of the basal turn of the cochlea. A local vibration source with a unique and precise location on the cochlear partition was created to avoid the ambiguity of the vibration source in most previous studies. We also measured the vibration pattern at different places of a mechanical cochlear model. A slow backward traveling wave pattern was demonstrated by the time-domain sequence of the measured data. In addition to the wave propagation study, a transmission line mathematical model was used to interpret why no tonotopicity was observed in the backward traveling wave.

Funder

Shenzhen Committee of Science, Technology and Innovation

Publisher

Hindawi Limited

Subject

Neurology (clinical),Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3