Control of Grasp Stability When Humans Lift Objects With Different Surface Curvatures

Author:

Jenmalm Per1,Goodwin Antony W.2,Johansson Roland S.1

Affiliation:

1. Department of Physiology, Umeå University, S-901 87 Umea, Sweden; and

2. Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria 3052, Australia

Abstract

Jenmalm, Per, Antony W. Goodwin, and Roland S. Johansson. Control of grasp stability when humans lift objects with different surface curvatures. J. Neurophysiol. 79: 1643–1652, 1998. In previous investigations of the control of grasp stability, humans manipulated test objects with flat grasp surfaces. The surfaces of most objects that we handle in everyday activities, however, are curved. In the present study, we examined the influence of surface curvature on the fingertip forces used when humans lifted and held objects of various weights. Subjects grasped the test object between the thumb and the index finger. The matching pair of grasped surfaces were spherically curved with one of six different curvatures (concave with radius 20 or 40 mm; flat; convex with radius 20, 10, or 5 mm) and the object had one of five different weights ranging from 168 to 705 g. The grip force used by subjects (force along the axis between the 2 grasped surfaces) increased with increasing weight of the object but was modified inconsistently and incompletely by surface curvature. Similarly, the duration and rate of force generation, when the grip and load forces increased isometrically in the load phase before object lift-off, were not influenced by surface curvature. In contrast, surface curvature did affect the minimum grip forces required to prevent frictional slips (the slip force). The slip force was smaller for larger curvatures (both concave and convex) than for flatter surfaces. Therefore the force safety margin against slips (difference between the employed grip force and the slip force) was higher for the higher curvatures. We conclude that surface curvature has little influence on grip force regulation during this type of manipulation; the moderate changes in slip force resulting from changes in curvature are not fully compensated for by changes in grip force.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3