Abstract
The intention to act influences the computations of various task-relevant features. However, little is known about the time course of these computations. Furthermore, it is commonly held that these computations are governed by conjunctive neural representations of the features. But, support for this view comes from paradigms arbitrarily combining task features and affordances, thus requiring representations in working memory. Therefore, the present study used electroencephalography and a well-rehearsed task with features that afford minimal working memory representations to investigate the temporal evolution of feature representations and their potential integration in the brain. Female and male human participants grasped objects or touched them with a knuckle. Objects had different shapes and were made of heavy or light materials with shape and weight being relevant for grasping, not for “knuckling.” Using multivariate analysis showed that representations of object shape were similar for grasping and knuckling. However, only for grasping did early shape representations reactivate at later phases of grasp planning, suggesting that sensorimotor control signals feed back to the early visual cortex. Grasp-specific representations of material/weight only arose during grasp execution after object contact during the load phase. A trend for integrated representations of shape and material also became grasp-specific but only briefly during the movement onset. These results suggest that the brain generates action-specific representations of relevant features as required for the different subcomponents of its action computations. Our results argue against the view that goal-directed actions inevitably join all features of a task into a sustained and unified neural representation.
Funder
Canadian Government | Natural Sciences and Engineering Research Council of Canada
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献