Noise From Voltage-Gated Ion Channels May Influence Neuronal Dynamics in the Entorhinal Cortex

Author:

White John A.1,Klink Ruby2,Alonso Angel2,Kay Alan R.3

Affiliation:

1. Department of Biomedical Engineering, Center for BioDynamics, Boston University, Boston, Massachusetts 02215;

2. Department of Neurology and Neurosurgery, Montreal Neurological Institute, Montreal, Quebec H3A 2B4, Canada; and

3. Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242

Abstract

White, John A., Ruby Klink, Angel Alonso, and Alan R. Kay. Noise from voltage-gated ion channels may influence neuronal dynamics in the entorhinal cortex. J. Neurophysiol. 80: 262–269, 1998. Neurons of the superficial medial entorhinal cortex (MEC), which deliver neocortical input to the hippocampus, exhibit intrinsic, subthreshold oscillations with slow dynamics. These intrinsic oscillations, driven by a persistent Na+ current and a slow outward current, may help to generate the theta rhythm, a slow rhythm that plays an important role in spatial and declarative learning. Here we show that the number of persistent Na+ channels underlying subthreshold oscillations is relatively small (<104) and use a physiologically based stochastic model to argue that the random behavior of these channels may contribute crucially to cellular-level responses. In acutely isolated MEC neurons under voltage clamp, the mean and variance of the persistent Na+ current were used to estimate the single channel conductance and voltage-dependent probability of opening. A hybrid stochastic-deterministic model was built by using voltage-clamp descriptions of the persistent and fast-inactivating Na+ conductances, along with the fast and slow K+ conductances. All voltage-dependent conductances were represented with nonlinear ordinary differential equations, with the exception of the persistent Na+ conductance, which was represented as a population of stochastic ion channels. The model predicts that the probabilistic nature of Na+ channels increases the cell's repertoire of qualitative behaviors; although deterministic models at a particular point in parameter space can generate either subthreshold oscillations or phase-locked spikes (but rarely both), models with an appropriate level of channel noise can replicate physiological behavior by generating both patterns of electrical activity for a single set of parameters. Channel noise may contribute to higher order interspike interval statistics seen in vitro with DC current stimulation. Models with channel noise show evidence of spike clustering seen in brain slice experiments, although the effect is apparently not as prominent as seen in experimental results. Channel noise may contribute to cellular responses in vivo as well; the stochastic system has enhanced sensitivity to small periodic stimuli in a form of stochastic resonance that is novel (in that the relevant noise source is intrinsic and voltage-dependent) and potentially physiologically relevant. Although based on a simple model that does not include all known membrane mechanisms of MEC stellate cells, these results nevertheless imply that the stochastic nature of small collections of molecules may have important effects at the cellular and network levels.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3