Heterogeneous stochastic bifurcations explain intrinsic oscillatory patterns in entorhinal cortical stellate cells

Author:

Mittal Divyansh1ORCID,Narayanan Rishikesh1ORCID

Affiliation:

1. Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India

Abstract

Stellate cells (SC) in the medial entorhinal cortex manifest intrinsic membrane potential oscillatory patterns. Although different theoretical frameworks have been proposed to explain these patterns, a robust unifying framework that jointly accounts for intrinsic heterogeneities and stochasticity is missing. Here, we first performed in vitro patch-clamp electrophysiological recordings from rat SCs and found pronounced cell-to-cell variability in their characteristic physiological properties, including peri-threshold oscillatory patterns. We demonstrate that noise introduced into two independent populations (endowed with deterministic or stochastic ion-channel gating kinetics) of heterogeneous biophysical models yielded activity patterns that were qualitatively similar to electrophysiological peri-threshold oscillatory activity in SCs. We developed spectrogram-based quantitative metrics for the identification of valid oscillations and confirmed that these metrics reliably captured the variable-amplitude and arhythmic oscillatory patterns observed in electrophysiological recordings. Using these quantitative metrics, we validated activity patterns from both heterogeneous populations of SC models, with each model assessed with multiple trials of different levels of noise at distinct membrane depolarizations. Our analyses unveiled the manifestation of stochastic resonance (detection of the highest number of valid oscillatory traces at an optimal level of noise) in both heterogeneous populations of SC models. Finally, we show that a generalized network motif comprised of a slow negative feedback loop amplified by a fast positive feedback loop manifested stochastic bifurcations and stochastic resonance in the emergence of oscillations. Together, through a unique convergence of the degeneracy and stochastic resonance frameworks, our unifying framework centered on heterogeneous stochastic bifurcations argues for state-dependent emergence of SC oscillations.

Funder

The Wellcome Trust DBT India Alliance

Department of Biotechnology, Ministry of Science and Technology, India

Ministry of Human Resource Development, India

Revati and Satya Nadham Atluri Chair Professorship

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3