Spatiotemporal Structure of Cortical Activity: Properties and Behavioral Relevance

Author:

Prut Yifat12,Vaadia Eilon1,Bergman Hagai1,Haalman Iris1,Slovin Hamutal1,Abeles Moshe1

Affiliation:

1. Department of Physiology, School of Medicine and the Interdisciplinary Center for Neural Computation, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; and

2. Regional Primate Research Center, University of Washington, Seattle, Washington 98195

Abstract

Prut, Yifat, Eilon Vaadia, Hagai Bergman, Iris Haalman, Hamutal Slovin, and Moshe Abeles. Spatiotemporal structure of cortical activity: properties and behavioral relevance. J. Neurophysiol. 79: 2857–2874, 1998. The study was designed to reveal occurrences of precise firing sequences (PFSs) in cortical activity and to test their behavioral relevance. Two monkeys were trained to perform a delayed-response paradigm and to open puzzle boxes. Extracellular activity was recorded from neurons in premotor and prefrontal areas with an array of six microelectrodes. An algorithm was developed to detect PFSs, defined as a set of three spikes and two intervals with a precision of ±1 ms repeating significantly more than expected by chance. The expected level of repetition was computed based on the firing rate and the pairwise correlation of the participating units, assuming a Poisson distribution of event counts. Accordingly, the search for PFSs was corrected for rate modulations. PFSs were found in 24/25 recording sessions. Most PFSs (76%) were composed of spikes of more than one unit but usually not more than two units (67%). The PFSs spanned hundreds of milliseconds, and the average interval between two events within the PFSs was 200 ms. No traces of periodic oscillations were found in the PFS intervals. The bins of the matrix that were defined as PFSs were isolated temporally: the spikes that generated PFSs were not associated with high-frequency bursts or rapid coherent rate fluctuations. A given PFS tended to be correlated with the animal's behavior. Furthermore, for 19% of the PFS pairs that shared the same unit composition, each member of the pair was associated with a different type of behavior. The PFSs often appeared in clusters that were associated with particular phases of the behavior. The firing rate of single units did not provide a full explanation for the timing and structure of these clusters. A reduced spike train (RST) was defined for each unit by taking all spikes of that unit that were part of any PFS. In 88% of the cases the degree of modulation of the RST was higher than that of the complete spike train. The results suggest that relevant information is carried by the fine temporal structure of cortical activity. A coding scheme that involves such temporal structures is rich and sufficiently flexible to facilitate a rapid organization of cortical neurons into functional groups. The results can be accounted for by the synfire chain model, which suggests that cortical activity is mediated by synchronous activation of neural groups in a reverberatory mode.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3