Synchronization of Neuronal Responses in Primary Visual Cortex of Monkeys Viewing Natural Images

Author:

Maldonado Pedro,Babul Cecilia,Singer Wolf,Rodriguez Eugenio,Berger Denise,Grün Sonja

Abstract

When inspecting visual scenes, primates perform on average four saccadic eye movements per second, which implies that scene segmentation, feature binding, and identification of image components is accomplished in <200 ms. Thus individual neurons can contribute only a small number of discharges for these complex computations, suggesting that information is encoded not only in the discharge rate but also in the timing of action potentials. While monkeys inspected natural scenes we registered, with multielectrodes from primary visual cortex, the discharges of simultaneously recorded neurons. Relating these signals to eye movements revealed that discharge rates peaked around 90 ms after fixation onset and then decreased to near baseline levels within 200 ms. Unitary event analysis revealed that preceding this increase in firing there was an episode of enhanced response synchronization during which discharges of spatially distributed cells coincided within 5-ms windows significantly more often than predicted by the discharge rates. This episode started 30 ms after fixation onset and ended by the time discharge rates had reached their maximum. When the animals scanned a blank screen a small change in firing rate, but no excess synchronization, was observed. The short latency of the stimulation-related synchronization phenomena suggests a fast-acting mechanism for the coordination of spike timing that may contribute to the basic operations of scene segmentation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3