The effect of microsaccades in the primary visual cortex: a two-phase modulation in the absence of visual stimulation

Author:

Nativ Yarden,Bouhnik Tomer,Slovin Hamutal

Abstract

AbstractOur eyes are never still. Even when we attempt to fixate, the visual gaze is never motionless, as we continuously perform miniature oculomotor movements termed as fixational eye movements. The fastest eye movements during the fixation epochs are termed microsaccades (MSs), that are leading to continual motion of the visual input, affecting mainly neurons in the fovea. Yet our vision appears to be stable. To explain this gap, previous studies suggested the existence of an extra-retinal input (ERI) into the visual cortex that can account for the motion and produce visual stability. Here, we investigated the existence of an ERI to V1 fovea in behaving monkeys while they performed spontaneous MSs, during fixation. We used voltage-sensitive dye imaging (VSDI) to measure and characterize at high spatio-temporal resolution the influence of MSs on neural population activity, in the foveal region of the primary visual cortex (V1). In the absence of a visual stimulus, MSs induced a two-phase response modulation: an early suppression transient followed by an enhancement transient. A correlation analysis revealed an increase in neural synchronization around ∼100 ms after MS onset. Next, we investigated the MS effects in the presence of a small visual stimulus, and found that this modulation was different from the non-stimulated condition yet both modulations co-existed in the fovea. Finally, the VSD response to an external motion of the fixation point could not explain the MS modulation. These results support an ERI that may be involved in visual stabilization already at the level of V1.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3