Properties of a persistent inward current in normal and TEA-injected motoneurons

Author:

Schwindt P. C.,Crill W. E.

Abstract

1. Membrane currents of normal and TEA-injected cat lumbar motoneurons were investigated using the technique of somatic voltage clamp. 2. The current-voltage (I-V) relation of healthy motoneurons contains a region of negative slope conductance caused by a persistent inward current component (Ii). In the most striking examples, Ii is net inward at some potentials between 10 and 30 mV positive to resting potential. 3. Near its activation threshold (greater than or equal to 10 mV positive to rest), Ii does not decrement during prolonged voltage steps and, in most cells, activates very slowly. Ii amplitude increases and time to peak Ii decreases with further small increments of depolarization, and Ii decrements during sustained voltage steps. Maximum Ii amplitude occurs 20--30 mV positive to rest in most cells. Ii is not visible at sufficiently large depolarizations. 4. Ii appears to be mixed with potassium current components at nearly every potential where it is visible. These include a slow outward current first activated near Ii activation threshold, a fast outward current additonally activated at larger depolarizing potentials, and a fast, transient outward current that obscures the true onset of Ii at nearly every potential. 5. Ii is not carried by sodium entering via the fast, transient channels and is present after pharmacological blockage of sodium currents. It is proposed that Ii is predominantly carried by calcium ions. 6. The presence of inward tail currents after repolarization from potentials that activate a steady outward current suggest that Ii remains present but hidden at large depolarizations. Ii inactivation was further investigated in TEA-injected motoneurons since Ii and the tail currents are more prominent in these cells. 7. Conventional recordings from TEA-injected motoneurons suggest that a prolonged, postspike plateau potential is maintained by a persistent inward current. Voltage-clamp data can account for the principal features of the plateau potential. 8. Voltage-clamp results in TEA-injected motoneurons suggest that Ii is subject to little or no inactivation at potentials less than or equal to 30 mV positive to rest and to partial inactivation, at most, at higher potentials during steps lasting less than or equal to 100 ms. The apparent decay of Ii during sustained depolarization is caused by the development of a larger outward current. 9. Ii is similar in several ways to a persistent calcium current observed in some molluscan neurons. Theoretical and experimental results suggest that Ii is generated predominantly in a local region under voltage control and that the observed membrane currents govern somatic membrane potential and cell behavior.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3