Activation of rostral ventromedial medulla neurons by noxious stimulation of cutaneous and deep craniofacial tissues

Author:

Khasabov Sergey G.1,Malecha Patrick1,Noack Joseph1,Tabakov Janneta1,Okamoto Keiichiro1,Bereiter David A.1,Simone Donald A.1

Affiliation:

1. Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota

Abstract

The rostral ventromedial medulla (RVM) projects to the medullary and spinal dorsal horns and is a major source of descending modulation of nociceptive transmission. Traditionally, neurons in the RVM are classified functionally as ON, OFF, and NEUTRAL cells on the basis of responses to noxious cutaneous stimulation of the tail or hind paw. ON cells facilitate nociceptive transmission, OFF cells are inhibitory, whereas NEUTRAL cells are unresponsive to noxious stimuli and their role in pain modulation is unclear. Classification of RVM neurons with respect to stimulation of craniofacial tissues is not well defined. In isoflurane-anesthetized male rats, RVM neurons first were classified as ON (25.5%), OFF (25.5%), or NEUTRAL (49%) cells by noxious pinch applied to the hind paw. Pinching the skin overlying the temporomandibular joint (TMJ) altered the proportions of ON (39.2%), OFF (42.2%), and NEUTRAL (19.6%) cells. To assess the response of RVM cells to specialized craniofacial inputs, adenosine triphosphate (ATP; 0.01–1 mM) was injected into the TMJ and capsaicin (0.1%) was applied to the ocular surface. TMJ and ocular surface stimulation also resulted in a reduced proportion of NEUTRAL cells compared with hind paw pinch. Dose-effect analyses revealed that ON and OFF cells encoded the intra-TMJ concentration of ATP. These results suggest that somatotopy plays a significant role in the functional classification of RVM cells and support the notion that NEUTRAL cells likely are subgroups of ON and OFF cells. It is suggested that a portion of RVM neurons serve different functions in modulating craniofacial and spinal pain conditions.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3