Affiliation:
1. Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis; and
2. Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
Abstract
The rostral ventromedial medulla (RVM) is part of descending circuitry that modulates nociceptive processing at the level of the spinal cord. RVM output can facilitate pain transmission under certain conditions such as inflammation, and thereby contribute to hyperalgesia. Evidence suggests that substance P and activation of neurokinin-1 (NK-1) receptors in the RVM are involved in descending facilitation of nociception. We showed previously that injection of NK-1 receptor antagonists into the RVM attenuated mechanical and heat hyperalgesia produced by intraplantar injection of capsaicin. Furthermore, intraplantar injection of capsaicin excited ON cells in the RVM and inhibited ongoing activity of OFF cells. In the present studies, we therefore examined changes in responses of RVM neurons to mechanical and heat stimuli after intraplantar injection of capsaicin and determined the role of NK-1 receptors by injecting a NK-1 receptor antagonist into the RVM prior to capsaicin. After capsaicin injection, excitatory responses of ON cells and inhibitory responses of OFF cells evoked by mechanical and heat stimuli applied to the injected, but not contralateral, paw were increased. Injection of the NK-1 antagonist L-733,060 did not alter evoked responses of ON or OFF cells but attenuated the capsaicin-evoked enhanced responses of ON cells to mechanical and heat stimuli with less of an effect on the enhanced inhibitory responses of OFF cells. These data support the notion that descending facilitation from RVM contributes to hyperalgesia and that NK-1 receptors, presumably located on ON cells, play an important role in initiating descending facilitation of nociceptive transmission.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献